Synthesis of a Tetrasubstituted Cyclohexene from a Bicyclo[2.2.2]octa-2,5-diene

Folkert Boße and Martin E. Maier*

Halle (Saale), Fachbereich Chemie, Institut für Organische Chemie, Martin-Luther-Universität Halle-Wittenberg
Received September 7th, 1999
Keywords: Cross-coupling, Cycloadditions, Ozonolysis, Dynemicin, Ring cleavage

Abstract

A palladium-catalyzed cross-coupling reaction between the arylstannane 5c and the bicyclic vinyl bromide 3, which was obtained by a Diels-Alder reaction, provided the substituted bicyclo[2.2.2]octa-2,5-diene 6. A subsequent ozonolysis of the less substituted double bond of $\mathbf{6}$ followed

by reduction of the intermediate with sodium borohydride provided the highly functionalized cyclohexene 8 . This compound can be viewed as a substructure of the antitumor antibiotic dynemicin A.

Polysubstituted cyclohexanes and -hexenes represent important substructures in a number of natural products. Among several strategies for synthesizing such compounds, the tactical combination of a Diels-Alder reaction between a cyclic 1,3-diene and a suitable dienophile followed by cleavage of the bicyclic structure has been widely used [1]. As a consequence the stereochemistry of the two substituents that originate from cleavage of the bridge are cis to each other. This structural situation can be found, for example in the E-ring of the antitumor antibiotic dynemicin $A[2,3]$. The known total syntheses of dynemicin A have addressed this issue in different ways [4-8]. In the course of the synthesis of analogs [9] of dynemicin A (Scheme 1) we planned to use the above mentioned strategy for establishing the array of rings spanning $\mathrm{C}-\mathrm{E}$. One of the two functional groups resulting from the cleavage of the

A
B

Scheme 1 Dynemicin A as a lead compound for analog design
bridge will be transformed to a methyl group, while the other one would be used to fashion the enediyne (cf. structures A and B). In this paper, we report on initial studies in this direction resulting in the cyclohexene 8.

As a dienophile methyl 3-bromopropiolate (2) was used [10]. This was converted to the bicyclic vinyl bromide $\mathbf{3}$ by a Diels-Alder reaction [11]. The problem in subsequent functionalization reactions of $\mathbf{3}$ is the possible aromatization reaction through a retro Diels-Alder reaction with the elimination of ethylene. For the substitution of the bromide with an aryl group the aryl metal derivatives 5a-c were prepared from the bromide 4 $[12,13]$ (Scheme 2). The corresponding zinc derivative 5a was not isolated and used directly [yield not determined (ND)] [14].

Scheme 2 Preparation of the bicyclic vinyl bromide 3 and the aryl metal compounds 5

The crucial cross-coupling reaction between the bicyclic bromide 3 and the aryl metal compounds 5 was studied under various conditions (Table 1). Initially, we tried to add the aryl group via the cuprate, derived from the organozinc compound 5a [14]. However, this led to destruction of $\mathbf{3}$. On the other hand, palladium-catalyzed reactions were successful. For example, reaction of the organozinc compound 5a with $\mathbf{3}$ in the presence of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(\mathrm{dba}=$ dibenzylideneacetone $)$ and triphenylphosphine gave the desired compound 6 in 40% yield. A somewhat better yield could be realized with the arylboronic acid $\mathbf{5 b}$. With the same palladium catalyst but the weakly coordinating triphenylarsine as an additive and under basic conditions, the coupling product 6 could be obtained in 45% yield. The Stille coupling, finally, of the aryl stannane 5 c with 3 gave the best results. We used conditions that had been advantageous in our hands for the coupling of α-iodoenones with aryl metal compounds [15]. That is, use of the relatively stable $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$, triphenylarsine as a coligand, the polar solvent N-methylpyrrolidinone (NMP) and copper iodide facilitated the coupling reaction. In order to suppress the unwanted aromatization reaction, the temperature was kept below $45^{\circ} \mathrm{C}$.

Table 1 Cross-coupling reactions of the bromide $\mathbf{3}$ with aryl metal compounds 5 with $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}$ as catalyst
$\left.\begin{array}{lll}\text { aryl metal } \\ \text { compounds }\end{array}\right)$ conditions \quad yield of 6 (\%)

With the substituted oxabicyclooctadiene 6 in hand, we turned to the oxidative cleavage of the less substituted double bond (Scheme 3). Using the VanRheenen conditions [16], that is catalytic amounts of osmium tetroxide in the presence of N -methylmorpholine N -oxide (NMO) the diol 7 was isolated in moderate yield. Such yields are not seldom for the dihydroxylation of bicyclic olefins [16]. In analogy to the dihydroxylation of other bicyclic olefins, the reaction was assumed to take place anti to the ethano bridge [17]. The yield of the dihydroxylation reaction was somehow higher with tert-butyl hydroperoxide as oxidizing agent [18].

Since the yield could not be further improved, unfolding of the bicyclic structure by dihydroxylation and oxidative cleavage of the diol was not pursued further. Instead, cleavage of the double bond by ozonolysis and reductive work-up proved to be more efficient. In order to check for overoxidation, the end point of the ozonolyis was determined with an indicator [19]. Without isolation the intermediate was reduced with sodium borohydride. Treatment with acid induced lactonization to compound 8 . This way the two hydroxymethyl groups could be differentiated.

Scheme 3 Selective functionalization of the less substituted double bond of the bicyclic olefin 6

In summary, we developed an efficient synthetic route to the highly functionalized cyclohexene $\mathbf{8}$ by oxidative cleavage of the Diels-Alder adduct 6. Further work is underway to apply this strategy to the synthesis of dynemicin A analogs.

Financial support by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged.

Experimental

${ }^{1}$ H NMR: Varian Unity 500 (500 MHz), Varian Gemini 2000 (400 MHz), Varian Gemini 200 (200 MHz); all spectra were recorded in CDCl_{3} as solvent with tetramethylsilane as internal standard. - ${ }^{13} \mathrm{C}$ NMR: Varian Unity $500(125 \mathrm{MHz})$, Varian Gemini 2000 (100 MHz), Varian Gemini 200 (50 MHz), broad-band decoupling. The signal multiplicities were determined by means of the DEPT 135 or the APT technique; + for CH or CH_{3}, - for CH_{2}, \times for C. - IR: Perkin-Elmer Spectrum 1000. - Flash chromatography: J. T. Baker silica gel $30-60 \mathrm{~mm}$. - Thin-layer chromatography: Macherey, Nagel \& Co precoated TLC plates Polygram SIL G/UV $254 \cdot$ - All experiments were carried out under nitrogen or argon. Petroleum ether with a boiling range of $35-65^{\circ} \mathrm{C}$ was used; THF
was distilled from sodium benzophenone ketyl immediately before use. The following reagents were prepared according to literature procedures: methyl 3-bromopropiolate (2) [10], aryl bromide 4 [12, 13], aryl stannane $5 \mathbf{c}$ [13], $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ CHCl_{3} [20].

Methyl 3-bromobicyclo[2.2.2]octa-2,5-dien-2-carboxylate (3)

A mixture of the bromide $2(8.46 \mathrm{~g}, 51.9 \mathrm{mmol})$ and cyclohexadiene ($4.99 \mathrm{~g}, 62.3 \mathrm{mmol}$) was stirred at $100{ }^{\circ} \mathrm{C}$ for 18.5 h . After cooling to room temperature, the volatiles were removed in vacuo. Purification of the residue by flash chromatography (petroleum ether/ethyl acetate, gradient elution, 15:1 to $4: 1$) gave $9.84 \mathrm{~g}(78 \%)$ of $\mathbf{3}$ as a colorless oil. - TLC (petroleum ether/ethyl acetate, 8:1): $R_{\mathrm{f}}=0.52 .-{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=1.32-1.39\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43-$ $1.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56-1.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.87-3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.29-4.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $6.27-6.30,6.32-6.35(2 \mathrm{~m}, 1 \mathrm{H}$ each, vinyl CH).

2-[3-(tert-Butyldimethylsilyloxy)phenyl]boronic acid (5b)

To a solution of the aryl bromide 4 [12] ($14.2 \mathrm{~g}, 49.5 \mathrm{mmol}$) in THF (80 ml) was added dropwise n-butyllithium (1.6 M in n-hexanes, $43 \mathrm{ml}, 69 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. After being stirred for 15 min at that temperature, trimethyl borate $(15.4 \mathrm{~g}$, 0.149 mol) was added. The mixture was stirred for 2.5 h while it warmed to $-60^{\circ} \mathrm{C}$, and for 4 h at room temperature. Hydrolysis was performed at $0{ }^{\circ} \mathrm{C}$ by adding satd. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 ml). After being stirred for 5 min , the mixture was filtered, and the filtrate extracted with ethyl acetate ($3 \times$ $50 \mathrm{ml})$. The combined organic layers were washed with water (100 ml), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, gradient elution, 10:1 to $1: 1$) to provide $6.37 \mathrm{~g}(51 \%)$ of $\mathbf{5 b}$ as a yellow oil. - TLC (petroleum ether/ethyl acetate, 3:1): $R_{\mathrm{f}}=0.33 .-{ }^{1} \mathrm{H}$ NMR (200 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.26\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.03[\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 7.04-7.10(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.34-7.42(\mathrm{~m}$, 1 H , aromatic H$), 7.66-7.68(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.78-7.83$ $(\mathrm{m}, 1 \mathrm{H}$, aromatic H$) .-{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=$ $-4.30\left[+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.27\left(\times, \mathrm{SiCMe}_{3}\right), 25.77\left[+, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 124.62, 126.65, 128.55, 129.24 (+ , aromatic CH), 155.43 (\times, aromatic C). - MS (EI), $m / z(\%): 252$ (1) $\left[\mathrm{M}^{+}\right], 251$ (2) $\left[\mathrm{M}^{+}-\right.$ H], 224 (15), 167 (100). - IR (film): $v / \mathrm{cm}^{-1}=3220(\mathrm{~m}, \mathrm{OH})$, 3064 (w), 2955, 2931, 2894 (s, CH_{3}). $-\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{BO}_{3} \mathrm{Si}$ (252.2): an elemental analysis was not obtained.

Methyl 3-[3-(tert-butyldimethylsilyloxy)phenyl]bicyclo [2.2.2]octa-2,5-dien-2-carboxylate (6)

Using the arylzinc compound 5a: To a solution of the aryl bromide $4(0.450 \mathrm{~g}, 1.57 \mathrm{mmol})$ in dry THF (4 ml) was added dropwise $n \mathrm{BuLi}(1.6 \mathrm{~m}$ in hexane, $(0.98 \mathrm{ml}, 1.6 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 15 min at that temperature, a solution of zinc bromide ($353 \mathrm{mg}, 1.57 \mathrm{mmol}$) in dry THF $(3 \mathrm{ml})$ was added. The mixture was stirred for 5 min at $0^{\circ} \mathrm{C}$ and then recooled to $-78{ }^{\circ} \mathrm{C}$ before a solution of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(31 \mathrm{mg}, 60 \mu \mathrm{~mol})$, triphenylphosphine ($63 \mathrm{mg}, 0.24 \mathrm{mmol}$) and the bromide $3(293 \mathrm{mg}, 1.21 \mathrm{mmol}$) in THF (3 ml) was added. The mixture was stirred for 15 h
while it slowly warmed to room temperature. Then it was diluted with diethyl ether (100 ml), and washed with water $(2 \times 20 \mathrm{ml})$ and satd. NaCl solution $(20 \mathrm{ml})$. The organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 20:1); yield of 6179 mg (40%).
Using the boronic acid $\mathbf{5 b}$: To a mixture of the bromide $\mathbf{3}$ ($269 \mathrm{mg}, 1.11 \mathrm{mmol}$), triphenylarsine ($68 \mathrm{mg}, 0.22 \mathrm{mmol}$), $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(27 \mathrm{mg}, 55 \mu \mathrm{~mol})$ and the boronic acid $\mathbf{5 b}$ ($321 \mathrm{mg}, 1.27 \mathrm{mmol}$) in dioxane (5 ml) was added aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution ($2.0 \mathrm{~m}, 1.2 \mathrm{ml}$). The reaction mixture was stirred in an oil bath for 90 min at $45^{\circ} \mathrm{C}$. Then it was cooled to room temperature and worked up as described above; yield of $6185 \mathrm{mg}(45 \%)$.
Using the arystannane $\mathbf{5 c}$: A mixture containing the bromide $2(9.13 \mathrm{~g}, 37.6 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3} \cdot \mathrm{CHCl}_{3}(0.683 \mathrm{~g}, 1.31 \mathrm{mmol})$, $\mathrm{CuI}(5.36 \mathrm{~g}, 28.2 \mathrm{mmol})$ and triphenylarsine $(1.61 \mathrm{~g}$, 5.26 mmol) and NMP was degassed by carefully evaporating and flushing the apparatus with argon several times. After stirring for 10 min , the stannane $\mathbf{5 c}(22.4 \mathrm{~g}, 45.1 \mathrm{mmol})$ was added and the flask lowered into an oil-bath $\left(45^{\circ} \mathrm{C}\right)$. The reaction mixture was stirred for 26 h at $45^{\circ} \mathrm{C}$, cooled to room temperature, poured into water (200 ml) and diethyl ether $(100 \mathrm{ml})$. The aqueous phase was extracted with diethyl ether $(4 \times 100 \mathrm{ml})$. The combined organic layers were washed with brine (50 ml), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The residue was purified by flash chromatogrphy (petroleum ether/ethyl acetate, gradient elution, $50: 1$ to $15: 1$) to provide $8.32 \mathrm{~g}(60 \%)$ of 6 as a colourless oil. - TLC (petroleum ether/ethyl acetate, 8:1): $R_{\mathrm{f}}=0.54 .-{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=0.18\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.97[\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.38-1.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.56(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.79-3.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.21-$ $4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.36-6.39(\mathrm{~m}, 1 \mathrm{H}$, vinyl H), 6.43-6.46 (m, 1H, vinyl H), 6.64-6.65 (m, 1H, aromatic H), 6.72-6.77 $(\mathrm{m}, 2 \mathrm{H}$, aromatic H$), 7.14(\mathrm{t}, \mathrm{J} / \mathrm{Hz}=7.8,1 \mathrm{H}$, aromatic H$)$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=-4.38\left[+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, $18.17\left(\times, \mathrm{SiCMe}_{3}\right), 24.64,24.80\left(-, \mathrm{CH}_{2}\right), 25.68$ [+, $\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}$], 38.93, $45.82(+, \mathrm{CH}), 51.15\left(+, \mathrm{OCH}_{3}\right), 118.99$, 119.10, 120.43, 128.67 (+, aromatic $\underline{C H}$, vinyl $\underline{C H}$), 132.08 (\times, aromatic C, vinyl C), 133.02, 135.22 (+ , aromatic $\underline{\mathrm{C}} \mathrm{H}$, vinyl $\underline{C H}$), 141.01, 155.14, 155.97 (\times, aromatic $\underline{C O M e}$, vinyl C), 166.85 ($\times, \mathrm{C}=\mathrm{O}$). - MS (EI), $m / z(\%): 370$ (12) [$\left.\mathrm{M}^{+}\right], 342$ (10) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}\right], 313$ (4) $\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right]$, 285 (6) $\left[\mathrm{M}^{+}-\mathrm{C}_{2} \mathrm{H}_{4}-\right.$ $\mathrm{C}_{4} \mathrm{H}_{9}$], 253 (100). - IR (film): $v / \mathrm{cm}^{-1}=3058$ (m), 2953, 2858 (s), 1704 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), $1634(\mathrm{~m})$. - HRMS ($\left.\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}\right)$: calcd. 370.1964, found 370.1959.

Methyl 3-[3-(tert-Butyldimethylsilyloxy)phenyl]-5,6-di-hydro-xybicyclo[2.2.2]oct-2-en-2-carboxylate (7)
Oxidation with NMO: To a solution of the alkene $6(200 \mathrm{mg}$, 0.540 mmol) and NMO ($70 \mathrm{mg}, 0.59 \mathrm{mmol}$) in $\mathrm{THF} / t \mathrm{BuOH} /$ water ($7 \mathrm{ml}, 5: 2: 1$) was added a solution of $\mathrm{OsO}_{4}(3.9 \mathrm{mM}$, $4.1 \mathrm{ml}, 16 \mu \mathrm{~mol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 23 h while reaching room temperature. For the isolation of 7, the mixture was treated with satd. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (5 ml) and then most of the solvent was removed in vacuo. The residue was diluted with water (5 ml) and then extracted with diethyl ether $(2 \times 20 \mathrm{ml})$. The combined organic layers were washed with brine (10 ml), dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and
concentrated. The residue was purified by flash chromatography (petroleum ether/ethyl acetate, 2:1) to yield 61 mg (28%) of 7 as a colourless oil.
Oxidation with $t \mathrm{BuOOH}$: To a solution of the bicyclic alkene $6(245 \mathrm{mg}, 0.661 \mathrm{mmol})$ in acetone $(10 \mathrm{ml})$ were added dropwise solutions of $t \mathrm{BuOOH}$ (70% in water, $0.14 \mathrm{ml}, 1.1 \mathrm{mmol}$) and OsO_{4} in $t \mathrm{BuOH}(3.9 \mathrm{mM}, 0.34 \mathrm{ml}, 1.3 \mu \mathrm{~mol})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 45 min at $0^{\circ} \mathrm{C}$ and then for 20 h at room temperature. After that another portion of the $t \mathrm{BuOOH}$ solution ($0.14 \mathrm{ml}, 1.1 \mathrm{mmol}$) was added, the mixture stirred for 1 h , treated with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (5 ml) and then concentrated in vacuo to remove most of the solvent. Work-up and isolation were performed as described above to yield $98 \mathrm{mg}(37 \%)$ of 7 as colourless oil. - TLC (petroleum ether/ ethyl acetate, 2:1): $R_{\mathrm{f}}=0.27 .-{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta / \mathrm{ppm}=0.18\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.96\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 1.40-$ $1.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.50-1.56\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{OH}\right), 2.51(\mathrm{~d}$, $\mathrm{J} / \mathrm{Hz}=4.9,1 \mathrm{H}, \mathrm{OH}), 3.02-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.29-3.30(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90-3.93(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH})$, $3.99-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHOH}), 6.73-6.75(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$)$, 6.80-6.81 ($\mathrm{m}, 1 \mathrm{H}$, aromatic H), $6.89-6.92(\mathrm{~m}, 1 \mathrm{H}$, aromatic $\mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$) .-{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta / \mathrm{ppm}=-4.56\left[+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 18.02\left(\times, \mathrm{SiCMe}_{3}\right)$, $21.10,21.28\left(-, \mathrm{CH}_{2}\right), 25.55\left[+, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.46,45.89(+$, $\mathrm{CH}), 51.47\left(+, \mathrm{OCH}_{3}\right), 70.11,70.16(+, \mathrm{CHOH}), 119.19$, 119.46, 120.85 (+, aromatic C), 127.62 (\times, aromatic C, vinyl C), 128.78 (+ , aromatic C), $141.55,152.56,155.31(\times$, aromatic C, vinyl C), 166.24 (\times, C=O). - MS (EI), m / z (\%): 404 (31) $\left[\mathrm{M}^{+}\right], 372$ (13) $\left[\mathrm{M}^{+}-\mathrm{MeOH}\right], 344(15)\left[\mathrm{M}^{+}-\mathrm{MeOH}-\right.$ $\mathrm{H}_{2} \mathrm{O}$, 255 (100). - IR (film): $\mathrm{v} / \mathrm{cm}^{-1}=3433$ (s, br, OH), 3062 (m), 2953, 2860 (s), 1705 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$). - HRMS $\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{Si}\right)$: calcd. 404.2019, found 404.2033.

7-[3-(tert-Butyldimethylsilyloxy)phenyl]-6-hydroxymethyl-1,3,3a,4,5,6-hexahydro-1-iso-benzofuranon (8)

Through a solution of the bicylic alkene $6(379 \mathrm{mg}$, 1.02 mmol), pyridine (0.75 ml) and sudan III indicator $(0.2 \mathrm{ml}$ of a saturated solution in EtOH$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{MeOH}(10 \mathrm{ml}, 1: 1)$ was passed ozone at $-78{ }^{\circ} \mathrm{C}$ until the colour changes from red to yellow. The excess of ozone was removed by passing a slow stream of argon through the solution at room temperature. The solution was recooled to $-78^{\circ} \mathrm{C}$, treated with sodium borohydride ($135 \mathrm{mg}, 3.58 \mathrm{mmol}$) and then stirred for 14 h during which it was allowed to reach room temperature. Following the addition of $\mathrm{HCl}(2 \mathrm{ml}$ of an 10% aqueous solution), most of the solvent was removed in vacuo and the residue taken up in diethyl ether $(100 \mathrm{ml})$. The organic layer was washed with $\mathrm{HCl}(15 \mathrm{ml}$ of an 10% aqueous solution) and the aqueous phase extracted with diethyl ether $(3 \times 20 \mathrm{ml})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash chromatography (petroleum ether(ethyl acetate, gradient from 20:10 to 13:10). yield of $\mathbf{8}$ 163 mg (43%), colourless oil. - TLC (petroleum ether/ethyl acetate, $1: 1$): $R_{\mathrm{f}}=0.47$. $-{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=0.16,0.17\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 0.95\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right]$, 1.34-1.44 (m, 1H, CH2 $), 1.74-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.89-$ $1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19-2.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70-2.75(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}), 2.95-3.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 3.33(\mathrm{dd}, \mathrm{J} / \mathrm{Hz}=11.0,7.4$, $\left.1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.46\left(\mathrm{dd}, \mathrm{J} / \mathrm{Hz}=11.0,3.3,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.79(\mathrm{dd}$,
$\left.J / \mathrm{Hz}=8.2,10.3,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.48(\mathrm{t}, \mathrm{J} / \mathrm{Hz}=8.2,8.2,1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{O}\right), 6.59-6.60(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 6.71-6.73(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 6.77-6.80(\mathrm{~m}, 1 \mathrm{H}$, aromatic H$), 7.16-7.20(\mathrm{~m}$, 1 H , aromatic H). $-{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta / \mathrm{ppm}=$ $-4.69,-4.59\left[+, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 17.99\left(\times, \mathrm{SiCMe}_{3}\right), 21.27,24.54$ $\left(-, \mathrm{CH}_{2}\right), 25.54\left[+, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right], 39.27,42.61(+, \mathrm{CH}), 64.23$, $70.84\left(+, \mathrm{CH}_{2} \mathrm{O}\right), 119.48,119.98,120.41$ (+, aromatic $\left.\underline{\mathrm{CH}}\right)$, 126.06 (\times, aromatic C, vinyl C), 129.34 (+ , aromatic $\underline{\mathrm{C}} \mathrm{H}$), 138.73, 148.68 (\times, aromatic C, vinyl C), 155.55 (\times, aromatic C), $168.63(\times, \mathrm{C}=\mathrm{O})$. $-\mathrm{MS}(\mathrm{EI}), \mathrm{m} / \mathrm{z}(\%): 374$ (3) $\left[\mathrm{M}^{+}\right], 359$ (2) $\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right], 317(100)\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right], 287$ (30), 269 (52). IR (Film): $v / \mathrm{cm}^{-1}=3436$ ($\mathrm{s}, \mathrm{br}, \mathrm{OH}$), 3063 (m), 2954, 2931, 2867 (s), 1760 (s, C=O). $-\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{Si}$ (374.6): an elemental analysis could not be obtained.

References

[1] T.-L. Ho, Tactics of Organic Synthesis, John Wiley \& Sons, New York 1994
[2] M. Konishi, H. Ohkuma, K. Matsumoto, T. Tsuno, H. Kamei, T. Miyaki, T. Oki, H. Kawaguchi, G. D. VanDuyne, J. Clardy, J. Antibiot. 1989, 42, 1449
[3] M. Konishi, H. Ohkuma, K. Matsumoto, K. Saitoh, T. Miyaki, T. Oki, H. Kawaguchi, J. Antibiot. 1991, 44, 1300
[4] J. Taunton, J. L. Wood, S. L. Schreiber, J. Am. Chem. Soc. 1993, 115, 10378
[5] A. G. Myers, M. E. Fraley, N. J. Tom, S. B. Cohen, D. J. Madar, Chem. Biol. 1995, 2, 33
[6] M. D. Shair, T.-y. Yoon, S. J. Danishefsky, Angew. Chem. 1995, 107, 1883
[7] M. D. Shair, T. Y. Yoon, K. K. Mosny, T. C. Chou, S. J. Danishefsky, J. Am. Chem. Soc. 1996, 118, 9509
[8] A. G. Myers, N. J. Tom, M. E. Fraley, S. B. Cohen, D. J. Madar, J. Am. Chem. Soc. 1997, 119, 6072
[9] M. E. Maier, F. Boße, A. J. Niestroj, Eur. J. Org. Chem. 1999, 1
[10] J. Leroy, Org. Synth. 1996, 74, 212
[11] P. Chamberlain, A. E. Rooney, Tetrahedron Lett. 1979, 383
[12] M. J. Martinelli, B. C. Peterson, D. R. Hutchison, Heterocycles 1993, 36, 2087
[13] F. Boße, A. R. Tunoori, M. E. Maier, Tetrahedron 1997, 53, 9159
[14] P. Knochel, R. D. Singer, Chem. Rev. 1993, 93, 2117
[15] F. Boße, A. R. Tunoori, A. J. Niestroj, O. Gronwald, M. E. Maier, Tetrahedron 1996, 52, 9485
[16] V. VanRheenen, D. Y. Cha, W. M. Hartley, Org. Synth. 1978, 58, 43
[17] M. Burdisso, R. Gandolfi, Tetrahedron 1991, 47, 7699
[18] K. Akashi, R. E. Palermo, K. B. Sharpless, J. Org. Chem. 1978, 43, 2063
[19] T. Veysoglu, L. A. Mitscher, J. K. Swayze, Synthesis 1980, 807
[20] T. Ukai, H. Kawazura, Y. Ishii, J. J. Bonnet, J. A. Ibers, J. Organomet. Chem. 1974, 65, 253

Address for correspondence:
Prof. Dr. Martin E. Maier
Institut für Organische Chemie
Universität Tübingen
Auf der Morgenstelle 18
D-72076 Tübingen
Fax: Internat. code (0) 7071295137
e-Mail: martin.e.maier@uni-tuebingen.de

